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The formulation is presented of a general approach to analysis and synthesis of
hand-held percussion machines by using methods of non-linear dynamics and optimal
control. A major objective is the analysis of the interaction of the machine with the operator
and the load. An attempt is made to optimize this interaction in order to improve machine
capacity and to reduce the reaction on the operator. Some general recommendations are
presented on the choice of the main characteristics of such machines.
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1. INTRODUCTION

The development of hand-held percussion machines is an important area of mechanical
engineering. Used in machines, strongly non-linear (vibro-impact) dynamic processes have
a severe influence on the operator and the environment. This applies strict limitations to
the operational parameters of hand-held machines and makes them an ideal choice for the
development of new dynamical and design concepts.

The complexity of hand-held percussion machine dynamical behaviour has limited their
analysis to the use of some special models [1–4]. Such models did not permit the discovery
of the common dynamical characteristics of the machines as a whole. The ideal is to find
the connection between the main output and resulting unfavourable vibrations with the
parameters of the excitation. The variety of mechanisms of vibration excitation in
hand-held percussion machines, in conditions of absence of the general theory, makes their
comparative analysis, choice of optimal design concepts and estimation of their
improvement potential difficult. It is striking that despite such widespread use, modern
textbooks fail to present to students the basic theoretical principles of percussion machine
dynamics.

Also, the problem of decreasing the vibration-induced load for all types of hand-held
percussion machines demands the development of a general optimal approach for
estimation and optimization of their excitation [5, 6]. As is shown in this paper, this can
be formulated as a problem of searching for the periodic optimal control and can be
transformed into a mathematical problem of moments in the proper normed linear space.
An exact solution of the formulated problem is obtained in an explicit analytical form.
This solution gives one the opportunity to obtain absolute estimations of the improvement
potential for all modifications of similar machines.

For the simplification of optimal design, the sequence of exact estimations is developed
for the series of possible quasi-optimal excitations. Some recommendations on the choice
of the main characteristics of machines are presented.
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2. HAND-HELD PERCUSSION MACHINE AS A DISCRETE MODULATOR

The general structure forms the interactions of the main units which exist in every
hand-held percussion machine and defines its dynamics as a whole. It consists (see Figure
1(a)) of a source of energy, a vibro-impact converter which transforms the energy of source
into a vibro-impact process, and a medium or object of treatment. In order to transfer
the energy of the source to the object being treated, an operator has to apply an effort
P to the machine body by pressing it to the object. This effort, which can be called feed,
reveals the main channel of permanent processing control by the operator.

The structure of the vibro-impact converter as a vibratory machine (see Figure 1(b))
includes an exciter of oscillations 1 consisting of drive, transmission and exciting
mechanism, the vibrator or oscillator 2 and the load 3 containing the mechanical
transformer (intermediate striker, transmitter or wave guide), tool and medium or object
of treatment.

According to mechanical laws, the force interactions between units are reciprocal ones
by nature and load both machine and operator. The feed P as an outer force depends on
the interaction of the machine as a whole with the object of treatment (see Figure 2). This
includes both an interaction of the striker 1 with a tool 2 or intermediate transformer 3
for processing of the object or media 4 (see Figure 2(a)) and a setting of the machine 5
and the tool and transformer against the object 4 in a position of impact (see Figure 2(b)).
Depending on the vibro-impact dynamics, the striker with the mass M1 can accomplish
mainly either single impact periodic motions [3] (see Figure 3(a)) or periodic motions with
repeated attenuated impacts [7] (see Figure 3(b)).

The regimes with single-impact interaction have the most intensive (resonant) nature [3].
They are used preferably for processing and demolition. During such processing, the
momentum of impact interaction per period T equals M1(1+R)ẋ1− , where ẋ1− is the
velocity of striker before the impact and R is the coefficient of striker reflection after the
impact. The coefficient R indicates the change of absolute velocity of the striker, and it
does not always coincide with a coefficient of restitution. It has to be measured preferably
for each specific impact pair in conditions of collision close to reality.

The impact momentum has to be equalized by the effort of feed Pef from the operator
according to the principle of impulse and momentum: PefT=M1(1+R)ẋ1− , which gives
the value of minimum feed for the accomplishment of vibro-impact periodic motion with
the prescribed energy (velocity ẋ1− ) and frequency f of impacts:

Pef =M1(1+R)ẋ1− f. (1)

Figure 1. General structure of a hand-held percussion machine. See text for key.
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Figure 2. Dynamical model of percussion machine and its interaction with tool and operator. See text for key.

It follows from formula (1) that an increase in the processing throughput, either by
the rise of impact energy or frequency, can be achieved due to the intensification of
Pef .

Any additional interactions between the machine and the object of treatment lead to
P exceeding Pef . If, for example, the interaction represents an unlimited series of attenuated
impacts during the period T, then for the same velocity ẋ1− of the first impact, it follows
that

P=M1(1+R)ẋ1− f(1+R+R2 + . . . )=
M1(1+R)ẋ1− f

1−R
ePef . (2)

Further increase in feed occurs if this series of impacts dies out after time tQT or through
the interaction of the machine body with the tool or intermediate striker during the setting
before impact or due to rebound of the tool after impact against the object of treatment.
If real feed P exceeds Pef , it imposes an additional stress upon the operator. The validity

Figure 3. Regimes of vibro-impact interaction.
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Figure 4. Percussion machine as a discrete modulator.

of the hand-held machine, from this point of view, can be estimated with the coefficient
of feed effectiveness:

l=Pef /P, 0E lE 1. (3)

The ideal hand-held percussion machine, which is capable of producing a periodic
vibro-impact process under arbitrary feed with a single impact during the period, can be
treated as a discrete modulator (see Figure 4) which converts the permanent feed Pef into
a series of impulses with period T:

I(nT)=M1(1+Rn )ẋ1n− s
n

d(t− nT). (4)

Here d(t) is Dirac’s function, n is the current number of impacts, ẋ1n− is the velocity of
striker before nth impact, and Rn is the proper slowly changing coefficient of striker
reflection. The value of ẋ1n− is

ẋ1n− 1g
nT

(n−1)T

Pef (t) dt/M1(1+Rn). (5)

Small movements of the centre of machine mass have been neglected here.
The output of the machine is defined usually as the energy of the striker before the

impact E=0·5M1ẋ2
1− . With the help of expression (1) this yields the characteristic for

modulator conversion,

E= gP2
ef , (6)

where

g=1/2(1+R)2M1f2.

Let the machine, for example, process concrete with the displacement (x)–force (F)
diagram of demolition during one impact as shown in Figure 5. The shaded area represents
the work of demolition. Upon supposing that the whole energy of impact
Ei =0·5(1−R2)M1ẋ2

1− loads the concrete Ei =0·5c1a2, it is possible to calculate the
efficiency of demolition with the formula h=1− c1/c2 and the capacity of chiselling

v=(a− b)f=2f01−
c1

c21XE−(1−R2)
2c1

=01−
c1

c21X 1−R
(1+R)c1M1

Pef . (7)
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The machine will be able to accomplish this capacity if under any feed Pef its exciting
mechanism develops a steady state vibro-impact process with single impact during the
period. It can be achieved either by the development of robust dynamical exciting systems
or with the use of control facilities. In the last case it is necessary to realize an autoresonant
vibro-impact structure [8].

3. EXCITATION OF HAND-HELD PERCUSSION MACHINE AS A PROBLEM OF
OPTIMAL CONTROL

Let us investigate the optimal conditions of machine excitation with single impact during
the period. It is supposed that under the influence of excitation the periodic force acting
on the striker is described by an unknown periodic function ũ(t) (see Figure 2). This can
be due to the variation of pressure in the gas chamber of the hammer drill, hydraulic
pressure in the cylinder of the breaker, compression of some spring elements of the striker
suspension or electromagnetic interaction of the striker as an element of a linear motor.
In all cases, this force has a simultaneous opposite action on the body of the machine and
through it on the operator. The problem of optimization of excitation of ũ(t) can be
formulated as follows.

The differential equation of motion of the striker can be written as

ẍ1 = u(t), (8)

where x1 is the co-ordinate of the striker measured from the point of its impact, when
x1 =0; u(t)= ũ(t)/M1. The positive direction of x1 is shown in Figure 2.

In order to realize the periodic motion of the striker with the prescribed energy E or
velocity of impact ẋ1− and frequency f, the solution of equation (8) has to satisfy the
periodic conditions

t=0: x1 =0, ẋ1 = ẋ1− ,

t=T: x1 =0, ẋ1 = ẋ1+ , (9)

where T=2p/v=1/f is the period of motion and ẋ1+ =−Rẋ1− .

Figure 5. Force–displacement diagram of concrete demolition.
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Rewriting equation (8) in Cauchy form [9] gives

ẋ1(t)= ẋ1+ +g
t

0

u(t) dt, x1(t)= x1(0)+ tẋ1+ +g
t

0

(t− t)u(t) dt. (10)

Applying the periodic conditions (9) to equations (10) yields

(1+R)ẋ1− =g
T

0

u(t) dt, RTẋ1− =g
T

0

(T− t)u(t) dt. (11)

On the left sides of equations (11) there are known numbers. The right hand parts of
equations (11) represent the scalar products of the unknown function u(t) with prescribed
linear independent basic functions hi (t) (i=1, 2), where h1(t)=1, h2(t)=T− t and all
functions are defined in segment t$ [0, T]. The problem of finding the unknown function
u(t) under such conditions is known in mathematics as the moment problem [10].

For reduction of influence on the operator, the excitation u(t) has to be limited in some
technical sense. Two main limitations will be analyzed and compared: =u(t)= and
z(1/T)fT

0 u2(t) dt, which represent the important characteristics influencing vibration of
the machine body. As a result, the optimal solution of the moment problem for periodic
excitation with the prescribed period T has to be minimized either as

min
u

max
t$ [0, T]

=u(t)=, (12)

or as

min
u Xg

T

0

u2(t) dt. (13)

The basic mathematical foundations leading to the solution of the formulated optimal
problems are given in the Appendix.

4. OPTIMAL EXCITATION WITH MINIMAL AMPLITUDE

As shown in the Appendix, the optimal excitation u0(t) satisfying equations (11) and
minimizing (12) can be found in the form (see equation (A11) in the Appendix)

u0(t)=
sgn [n0

1 (T− t)+ n0
2 ]

g
T

0

=n0
1 (T− t)+ n0

2= dt

=U0 sgn [n0
1 (T− t)+ n0

2 ], (14)

where numbers n0
1 and n0

2 are the solution of the problem (see expression (A10) in the
Appendix) of finding

min
n1,n2 g

T

0

=n1(T− t)+ n2= dt=
1
U0

when n1RTẋ1− + n2(1+R)ẋ1− =1.

In this case it is not necessary to follow the entire regular procedure, because the solution
can be found by a simpler approach.
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According to equation (14), the optimal excitation u0(t) is a piecewise constant function
with no more than one switch during the interval of t$(0, T). This is because of the
linearity of the function under the signum sign. In our case it can only be a single possible
version

u0(t)=6−U0,
+U0,

if
if

t$ [0, t1)
t$ [t1, T)7, (15)

where t1 is an unknown value. Another combination of signs contradicts the nature of the
mechanical problem.

Substituting expression (15) into equations (11) yields, after integrating the system of
two equations with two unknown values, U0 and t1,

(1+R)ẋ1− = (T−2t1)U0, RTẋ1− = [(T−2t1)T+ t2
1 −T2/2]U0. (16)

After solution of these equations, it finally follows that

t1

T
=

1
1+R 01−X1−

1−R2

2 1,
U0 =

(1+R)2ẋ1−

2T(z1−0·5(1−R2)−0·5(1−R))
. (17)

It is important to mention that t1 does not depend on ‘‘power’’ characteristics of the
machines. The amplitude of excitation U0 is proportional to the feed Pef , upon taking into
account formula (1). This characterizes the dependence of the excitation energy on
intensity of the drilling process.

5. OPTIMAL EXCITATION WITH MINIMAL ROOT-MEAN-SQUARE VALUE

The estimation of the root-mean-square (RMS) value of the excitation follows ISO
recommendations. The proper optimal excitation has to satisfy equalities (11) under
condition (13). According to the Appendix (see equation (A12)), an optimal excitation can
be found as a linear combination of the basic functions h1(t) and h2(t),

u0(t)= q0
1 + q0

2 (T− t), (18)

where q0
1 and q0

2 are unknown numbers.
Substituting equation (18) into equalities (11), produces after integrating the system of

two equations with two unknown values q0
1 and q0

2 :

(1+R)ẋ1− = q0
1T+ q0

2 (T2/2), Rẋ1− = q0
1 (T/2)+ q0

2 (T2/3). (19)

After solution of these equations, this finally produces, with use of expression (18)

u0(t)=
2ẋ1−

T $2R−1+
3(1−R)t

T %. (20)
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Figure 6. Comparison of the body acceleration for different optimal excitations.

After the calculation of optimal excitation, it is possible to estimate the proper variable
component of body acceleration ã(t) perceived by the operator,

ã(t)= (M1/M)u0(t), (21)

where M is the mass of the body.
The characteristics of body acceleration for two different optimal excitations (see Figure

6) are shown in Table 1. They are calculated for the typical parameters of a heavy hammer
drill: ẋ1− =8·8 m/s (E0 7 Nm), M1 =0·2 kg, M=8·0 kg, f=45 Hz, R=0·25. These
parameters will be used in all following examples.

The results for the different optimal excitations turned out to be comparatively close.
Due to this, in the following analysis excitations with limited amplitude will be used as
being more convenient for estimations and accomplishment.

T 1

Body acceleration characteristics for two different optimal excitations

min
u

max
t$ [0,T]

=u(t)= (m/s2) min
u X1

T g
T

0

u2(t) dt (m/s2)

X1
T g

T

0

a2(t) dt 16·9 12·0

1
T g

T

0

=a(t)= dt 14·0 10·4

max
t$ [0,T]

=a(t)= 20·4 32·4



   -  173

6. OPTIMAL LAWS OF STRIKER MOTIONS

The optimal laws of striker motion can be obtained by integration of equations (10) with
respect to expressions (15) and (17). From the first of equations (10) it follows that

ẋ1(t)= ẋ1+ +g
T

0

u(t) dt=−Rẋ1− −2U0t1 +U0t. (22)

A maximum of striker deflection occurs, corresponding to when the velocity equals null
ẋ1(t2)=0, where t2 is the moment of maximum deflection. Then it follows from equation
(22) that t2 =2t1 +Rẋ1− /U0, or by taking into account expression (17),

t2

T
=

1−R
2

+
2R(z1−0·5(1−R2)−0·5(1−R))

(1+R)2 . (23)

Integration of the second of equations (10) gives

x1(t)= ẋ1+ t+g
T

0

(t− t)u(t) dt=−Rẋ1+ t−2U0t1t+U0t2/2.

Then, with expressions (15) and (17) taken into account,

x1max = x1(t2)=
U0T2

2 $1−R
2

+
2R(z1−0·5(1−R2)−0·5(1−R))

(1+R)2 %. (24)

This values defines the length of working stroke which influences the size of the machine.
The optimal laws of striker motion are shown in Figure 7. The influence of R on values

t1 and U0 are presented in Figure 8. It is important to remark that U0 depends weakly on
the changing of R.

7. ESTIMATIONS OF QUASI-OPTIMAL EXCITATIONS WITH CONDENSED
ACCELERATION IMPULSE

In real mechanisms it is difficult to accomplish an optimal excitation. For example, in
typical hammer drills with an air chamber and crank-slide mechanism, it is possible to
achieve only a limited expansion of gas during the initial stage of excitation just after an
impact. In these conditions an attempt to realize the optimal excitations (15) or (20) looks
impractical. In order to bring the improvement potential to realization, it is useful to find
some quasi-optimal practical excitations and their estimations.

The reduction of the initial negative impulse of excitation within the framework of
limited amplitude can be achieved with the help of the following quasi-optimal excitations:

u(t)=6−U,
+nU,

if
if

t$ [0, t)
t$ [t1, T)7. (25)

Here U, t1 are unknown values and n is an approximating coefficient.
Substituting expression (25) into equalities (11), gives, after integrating the system of two

equations for the unknown values U and t,

(1+R)ẋ1− =−Ut1(1+ n)+ nUT,

RTẋ1− =−UTt1(1+ n)+ t2
1
U(1+ n)

2
+

nU
2

T2. (26)
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Figure 7. Optimal laws of striker motion.

The solution of these equations gives finally

t1

T
=

1
1+R $1−X1−

n(1−R2)
1+ n %,

U=
(1+R)ẋ1− f

n−
1+ n
1+R $1−X1−

n(1−R2)
1+ n %

. (27)

The quasi-optimal laws of excitation (25) and (27) for different n are presented in Figure
9. They demonstrate the tendency to reduce the initial negative acceleration and to
condense positive acceleration impulse. It is seen that if n=100 the exciting force
(acceleration) acts practically in the positive direction only. Further estimations of
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possibility of these condensed positive impulses of excitation can be calculated with the
help of the following approximations of the excitation:

u(t)= 80,
U
0,

if
if
if

t$ [0, t1)
t$ [t1, t1 +D)
t$ [t1 +D, T)9, (28)

Here U, t1 are unknown values, and D is the permissible duration of positive acceleration,
(t1 +D)/TE 1.

Substituting expression (28) into equalities (11) and then integrating brings once again
a system of two equations for the unknown values U and t1. The solution of these equations
gives finally

t1

T
=1−

1
2 0DT1−

R
1+R

, U=
(1+R)ẋ1− f

D/T
. (29)

Figure 10 demonstrates the different possible excitations of the striker with the aid of
positive impulses of different duration D/T. This continues the sequence of quasi-optimal
excitations of Figure 9. The dash-dotted line shows the position of the middle of the
impulse interval dependent upon R. The shortening of the interval D leads naturally to
the essential increasing of the exciting force (acceleration) amplitude. The worst case when
D/T=0·1 corresponds approximately to the excitation of modern hammer drills.

For vibration protection of operators of hand-held vibro-impact machines, the initial
harmonics of excitation play the most important role. That is why, for the estimation of
the improvement possibilities of different quasi-optimal excitations, it is reasonable to

Figure 8. Dependence of optimal excitation parameters on R.
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Figure 9. Quasi-optimal excitations with reduced rebound of striker.

compare the amplitudes of these harmonics. The Fourier series for the excitations (25) will
be

u(t)= nU$1−
t1

T 01+
1
n1%+ s

a

k=1

z2(1+ n)U
pk X1−cos 2pk

t1

T
cos (kvt+ qk ), (30)

where U and t1 are defined by expressions (27).

Figure 10. Quasi-optimal excitations with condensed acceleration impulses.
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Figure 11. Vibration action of quasi-optimal excitations.

For the excitations (28), the Fourier series will be

u(t)=
DU
T

+ s
a

k=1

2U
pk

sin pk
D

T
cos (kvt+ bk ), (31)

where U is defined by expressions (29). In the last two expressions the phases of the
harmonics were not specified because they will not be used in the following analysis.

It is simple to check that the constant components in both Fourier series are equal to
Pef /M1, as is physically clear. As a result, from expressions (27) and (29) it follows that
an increase in Pef , for the achievement of a higher capacity, has to be supported by the
proportional rise of U. An independent control of impact energy or frequency demands
a special synchronization of frequency.

The values of the amplitudes of the three initial harmonics for different quasi-optimal
excitations are shown in Figure 11 with solid lines. For comparison, the proper amplitudes
of the harmonics of excitation (20) with minimum root-mean-square value of excitation
are superimposed with dashed lines. The values of vibration presented are lower than the
proper characteristics of modern machines.

The comparison of initial harmonics with the total solution shows that traditional
estimation with the neglect of phase relations between harmonics can seriously
underestimate the injury risk in the case of the use of condensed acceleration impulses.

8. CONCLUSIONS

The reorganization of hand-held percussion machine excitation in the direction of
optimal excitation is an effective and conformable way of excitation improvement and
reduction of unfavourable vibration. It also relieves the load on the drive. This can be
achieved mainly through the extension of excitation impulse and stabilization of resonant
vibro-impact excitation.

The implementation of control units can transform a one-regime vibratory machine into
a multi-regime program-operated system. As a result, the machine becomes adaptable to
processes, tools and operators. It permits the operator to realize his programme of work
in accordance with formula (7) by variations of Pef .
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The technique developed gives the possibility of estimating an improvement potential
at every stage of reorganization. In practice, it can be made by direct measurement of the
force diagram of excitation or acceleration of the striker. The optimal cycle of excitation
also permits the comparison of percussion machines with different design by calculation
of their improvement potential from the point of their capacity and unfavourable vibration
activity.
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APPENDIX

A.1.         



There are m integral equalities

ai =g
T

0

hi (t)u(t) dt, i=1, 2, . . . , m, (A1)

where ai are known real numbers and hi (t) are the given linear independent functions
described on segment t$ [0, T]. It is necessary to find the unknown function u(t) which
satisfies equalities (A1) and has minimum modulus, according to expression (12). As shown
in the special mathematical literature [10, 11], the basic functions hi (t) have to be limited
then in the sense of fT

0 =hi (t)= dt which is always satisfied hereafter. Following reference [3],
here simple considerations will be given leading to the solution of the formulated problem.



   -  179

Upon choosing ni as arbitrary real numbers and multiplying every equality (A1) by ni

and summing them up, it follows, after changing the order of integration and summation,
that

s
m

i=1

aini =g
T

0

s
m

i=1

nihi (t)u(t) dt. (A2)

As the numbers ni are proposed as arbitrary ones, it is possible to choose them specifically
so that

s
m

i=1

aini =1. (A3)

Then, from equation (A2),

1=g
T

0

s
m

i=1

nihi (t)u(t) dt. (A4)

On the right side of equation (A4), the following inequalities are obvious:

1=g
T

0

s
m

i=1

nihi (t)u(t) dtEg
T

0 b s
m

i=1

nihi (t)u(t)b dtEmax
t$ [0,t]

=u(t)= g
T

0 b s
m

i=1

nihi (t)b dt. (A5)

From expression (A5), it is clear that

max
t$ [0,T]

=u(t)=e$g
T

0 b s
m

i=1

nihi (t)b dt%
−1

. (A6)

The inequality (A6) is satisfied for the all numbers ni from equality (A3) and therefore,
for such numbers n0

i which maximize the right side of inequality (A6)

max
t$ [0,T]

=u(t)=e$min
ni g

T

0 b s
m

i=1

nihi (t)b dt%
−1

=$g
T

0 b s
m

i=1

n0
i hi (t)b dt%

−1

, s
m

i=1

n0
1ai =1.

(A7)

From relation (A7) it follows that

min
u

max
t$ [0,T]

=u(t)=,

which has to be in reality for all of ni , is

U0 =min
u

max
t$ [0,T]

=u(t)==$g
T

0 b s
m

i=1

n0
i hi (t)b dt%

−1

. (A8)

Now, it is necessary to find the function u(t) in such a manner that the chain of the two
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inequalities in expression (A5) transforms itself into equalities. It can be shown that this
takes place if and only if

u(t)=U sgn s
m

i=1

nihi (t), (A9)

where U= const.
So, the first inequality in expression (A5) transforms itself into an equality if and only

if functions

sm
i=1 nihi (t)

and u(t) have, at every moment of time, similar signs. The second inequality transforms
itself into an equality if and only if u(t) is a constant: =u(t)==U= const for all t$ [0, T].
As a result, the function u(t) which satisfies the equalities (A1) has to be in the form (A9).
But because it is necessary to minimize amplitude

U=max
t

=u(t)=,

the u(t) has to be chosen from expression (A8), where numbers n0
i are found from the

solution of the following problem: to find

min
ni g

T

0 b s
m

i=1

nihi (t)b dt (A10)

under condition (A3).
Therefore, the solution of the initial problem according to expressions (A8) and (A9)

is as follows:

u0(t)=

sgn s
m

i=1

n0
i hi (t)

g
T

0 b s
m

i=1

n0
i hi (t)b dt

. (A11)

A.2.         

-- 

To obtain an absolute estimation of improvement potential of excitation in the sense
of a root-mean-square value, it is necessary to find the unknown function u0(t) which
satisfies equalities (A1) and has a minimum value as shown in expression (13). Following
reference [10], it will be shown below that the optimal excitation in this case can be found
as a linear combination of the basic functions hi (t),

u0(t)= q0
1h1(t)+ · · ·+ q0

mhm (t), (A12)

where the unknown numbers q0
1 , . . . , q0

m are the solution of the set of linear equations. The
basic functions hi (t) have to be limited in this case in the sense of the norm zfT

0 h2
i (t) dt

which is always satisfied hereafter.
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Substituting expression (A12) into equalities (A1) instead of u(t), it follows, after
integration of the set of equations for finding the numbers q0

1 , . . . , q0
m is

l11q0
1 + · · ·+ l1mq0

m = a1,

. . . . . . .

lm1q0
1 + · · ·+ lmmq0

m = am , (A13)

where the coefficients lij are defined by the equalities

lij =g
T

0

hi (t)hj (t) dt, i, j=1, . . . , m. (A14)

In order to prove the existence of the non-trivial solution of equations (A13), it has to be
shown that the determinant of the set of equations (A13) is not equal to zero. So, due to
the linear independence of functions hi (t) for the arbitrary numbers q1, . . . , qm ,

h(t)= h1(t)q1 + · · ·+ hm (t)qm $ 0, (A15)

and it follows that

g
T

0

h2(t) dt=g
T

0

[h1(t)q1 + · · ·+ hm (t)qm ]2 dt= s
m

i, j=1

lijqiqj q 0, if s
m

i=1

q2
i $ 0.

With the above mentioned propositions, the quadratic form

F(q1, . . . , qm )= s
m

i, j=1

lijq1qj

of variables qi is positive definite when q2
1 + · · ·+ q2

m $ 0.
It is known that the coefficients lij of a positive definite form satisfy the Sylvester

inequalities [12]:

l11 q 0, bl11

l21

l12

l22bq 0, . . . , n l11 . . . l1m

. . . . .
lm1 . . . lmmn=L{lij}q 0,

This proves the assertion about the determinant L of the set of equations (A13).
It will be shown now that the difference 8(t)= u(t)− u0(t) between the arbitrary

solution of equalities (A1) and the optimal one (A12) is orthogonal to the function u0(t).
Indeed, because u(t) and u0(t) satisfy equalities (A1), it follows that

g
T

0

hi (t)[u(t)− u0(t)] dt=g
T

0

hi (t)8(t) dt=0. (A16)

Upon multiplying the equalities (A16) consecutively by q0
i and summing these relations up,

it follows with respect to expression (A12) that

g
T

0

u0(t)8(t) dt=0, (A17)

which proves the orthogonality of functions u0(t) and 8(t).
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Finally, it will be proved that (A12) has a minimum norm >u0(t)>= fT
0 u2(t) dt. Let

u(t)$ u0(t); then

g
T

0

82(t) dtq 0. (A18)

Upon taking into consideration that u(t)= u0(t)+8(t), it follows that

>u(t)>2 =g
T

0

[u0(t)+8(t)]2 dt=g
T

0

[u0(t)]2 dt+g
T

0

[8(t)]2 dt+2 g
T

0

u0(t)8(t) dt.

(A19)

The last term on the right side of equation (19) is equal to zero according to relation (17);
the second one is positive due to expression (18). So, >u(t)>2 q >u0(t)>2 or >u(t)>q >u0(t)>.
Q.E.D.


